Podcast: Embed
Subscribe: Apple Podcasts | Spotify | Amazon Music | Android | Pandora | iHeartRadio | Blubrry | TuneIn | Deezer | RSS
The following question refers to Section 8.3 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure.
The question is asked by Western Michigan University medical student & CardioNerds Intern Shivani Reddy, answered first by University of Southern California cardiology fellow and CardioNerds FIT Trialist Dr. Michael Francke, and then by expert faculty Dr. Prateeti Khazanie.
Dr. Khazanie is an associate professor and advanced heart failure and transplant Cardiologist at the University of Colorado. Dr. Khazanie is an author on the 2022 ACC/AHA/HFSA HF Guidelines, the 2021 HFSA Universal Definition of Heart Failure, and multiple scientific statements.
The Decipher the Guidelines: 2022 AHA / ACC / HFSA Guideline for The Management of Heart Failure series was developed by the CardioNerds and created in collaboration with the American Heart Association and the Heart Failure Society of America. It was created by 30 trainees spanning college through advanced fellowship under the leadership of CardioNerds Cofounders Dr. Amit Goyal and Dr. Dan Ambinder, with mentorship from Dr. Anu Lala, Dr. Robert Mentz, and Dr. Nancy Sweitzer. We thank Dr. Judy Bezanson and Dr. Elliott Antman for tremendous guidance.
Clinical Trials Talks
You are taking care of a 34-year-old man with chronic systolic heart failure from NICM with LVEF 20% s/p CRT-D. The patient was admitted 1 week prior with acute decompensated heart failure. Despite intravenous diuretics the patient developed acute kidney injury, and ultimately placed on intravenous inotropes on which he now seems dependent. He has been following up with an advanced heart failure specialist as an outpatient and has been undergoing evaluation for heart transplantation, which was subsequently completed in the hospital.
His exam is notable for an elevated JVP, a III/VI holosystolic murmur, and warm extremities with bilateral 1+ edema. His most recent TTE shows LVEF 20%, moderate MR, moderate-severe TR and estimated RVSP 34 mmHg. His most recent laboratory data shows Na 131 mmol/L, Cr 1.2 mg/dL, and lactate 1.6 mmol/L. Pulmonary artery catheter shows RA 7 mmHg, PA 36/15 mmHg, PCWP 12 mmHg, CI 2.4 L/min/m2 and SVR 1150 dynes*sec/cm5.
The patient was presented at transplant selection committee and approved for listing for orthotopic heart transplant. What is the most appropriate next step in the management of this patient? |
|
A |
Refer patient for transcatheter edge-to-edge repair for MR |
B |
Continue IV inotropes as a bridge-to-transplant |
C |
Refer patient for tricuspid valve replacement |
D |
Initiate 1.5L fluid restriction |
Explanation |
The correct answer is B – continue IV inotropes as a bridge-to-transplant. Positive inotropic agents may improve hemodynamic status, but have not been shown to improve survival in patients with HF. These agents may help HF patients who are refractory to other therapies and are suffering consequences from end-organ-hypoperfusion. Our patient is admitted with worsening advanced heart failure requiring intravenous inotropic support. He has been appropriately evaluated and approved for heart transplant. He has demonstrated the requirement of continuous inotropic support to maintain perfusion. In patients such as this with advanced (stage D) HF refractory to GDMT and device therapy who are eligible for and awaiting MCS or cardiac transplantation, continuous intravenous inotropic support is reasonable as “bridge therapy” (Class 2a, LOE B-NR). Continuous IV inotropes also have a Class 2b indication (LOE B-NR) in select patients with stage D HF despite optimal GDMT and device therapy who are ineligible for either MCS or cardiac transplantation, as palliative therapy for symptom control and improvement in functional status. Conversely, long-term use of either continuous or intermittent intravenous inotropic agents, for reasons other than palliative care or as a bridge to advanced therapies, is potentially harmful (Class 3: Harm, LOE B-R). As of yet there is lack of clear evidence suggesting the benefit of one inotrope over another. To minimize adverse effects, the lowest possible dose of inotropes should be used, although the potential for development of tachyphylaxis should be acknowledged and the choice/dose of agent may need to be changed over time for longer periods of use. In addition, the ongoing need for inotropic support and the possibility of discontinuation should be regularly assessed. Although guidelines give a Class 2a recommendation for transcatheter edge-to-edge MV repair in patients with reduced EF and severe MR with persistent symptoms despite GDMT, this patient’s MR was graded as moderate on his most recent TTE and as such, he would not be an appropriate candidate for TEER. Although guidelines give a Class 1 recommendation for multidisciplinary management of patients with HF and VHD, as well as referral for consideration of intervention in patients with refractory TR, there are currently no guideline recommendations supporting surgical TVR in advanced HF patients with TR. Although fluid restriction has been associated with modest improvements in hyponatremia in patients with advanced HF, the clinical benefits of this therapy remain uncertain and as such was given a Class 2b recommendation in the clinical guidelines.
|
Main Takeaway |
Continuous intravenous inotropic support can be considered in patients with advanced heart failure refractory to GDMT who are awaiting durable MCS or heart transplant as “bridge therapy” (Class 2a) or for palliative therapy in patients with advanced HF who are ineligible for MCS/transplant (Class 2b), but is potentially harmful for long-term use for reasons beyond palliation or bridge to advanced therapies (class 3 recommendation). |
Guideline Loc. |
Section 8.3 Table 20 |